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Time-like geodesics in the first Tomimatsu-Sat0 metric 
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Abstract. A numerical study of the time-like geodesics in the first axially symmetric solution 
of the Einstein vacuum field equations given by Tomimatsu and Sato is made. The study is 
made on the equatorial plane, following the method employed by Bardeen, Press and 
Teukolsky in the Kerr field. 

1. Properties of TomimatswSato metrics 

The stationary axially symmetric solutions of the Einstein vacuum field equations can 
be written in the Papapetrou form : 

P2 ezr 
f f ds2 = - f (d t -o  d4)2+-d42+-(dp2+dz2). 

We obtain the first Tomimatsu-Sat0 (TS) solution (Tomimatsu and Sato 1972, 
1973a) i f :  

f = - ’  A 0 = -(1 2m9 -y2)C; B ’  A 

where x, y are prolate spheroidal coordinates, related to canonical coordinates through : 

m P  
z = - x y ,  6 

(3) 

6 is an integer parameter of the TS family (6 = 1 Kerr metric, 6 = 2 first TS metric), 
m is the gravitational mass, 4 is a parameter related to the angular momentum by: 
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J = m 2 q ;  and P = (1 -q2)li2. A ,  B and C are the polynomials: 

A = ~ 4 ( x 2 -  1)4+q4(1 -y2)4-2~zq2(x2- I)(I  -yz)[2(x2- 1)2+2(1 - y 2 ) 2  
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+3(x2- 1)(1 - y 2 ) ]  

B = [ P 2 ( ~ 4 - 1 ) - q z ( 1 - ~ 4 ) + 2 P ~ ( ~ 2 -  1 ) ] 2 + 4 q 2 y 2 [ P ~ ( ~ 2 -  l )+ (Px+  1)(1 -y2)]’ (4) 
c = -P3x(x2- 1)[2(x4- l)+(x2+3)(1-y2)]-P(x2- 1)[4xZ(x2- l)+(3x2+ 1)(1 -y’)] 

+ q2(Px + 1)(1 -y2)3. 

The properties of these metrics have been studied elsewhere (Tomimatsu and Sat0 
1973a, b, Gibbons and Russell-Clark 1973, M A Abramowicz and J P Lasota, un- 
published preprint No. 26, Polish Academy of Sciences). We are only interested in the 
equatorial section (y = 0) of the (6 = 2) TS space-time. Here, one finds three critical 
curves (Tomimatsu and Sat0 1973a). When the polynomial A vanishes, the time-like 
Killing vector a/&, becomes null, and we enter the ergosphere. This circle is the inter- 
section of the equatorial plane and the exterior infinite redshift surface. 

Beyond this circle, there is another circle where both A and B vanish, and where 
the curvature invariants diverge. This is the ring singularity of the TS metric. 

The third peculiar circle, which lies beyond the ring singularity, is the intersection 
of the false horizon with the equatorial plane, and occurs at x = 1. 

The axial Killing vector 8/84, becomes time-like between the second and the third 
circles : one therefore finds there closed time-like geodesics and a strong causality vio- 
lation (Gibbons and Russell-Clark 1973, Abramowicz and Lasota, unpublished). 

The physically interesting (or reasonable) region, occurs thus outside the ring singu- 
larity (Gibbons and Russell-Clark 1973), and we will study the time-like geodesics in 
this region only. 

The null geodesics have been studied by Tomimatsu and Sat0 (1973a). 

2. Calculation of time-like geodesics 

As a consequence of stationarity and axial symmetry, the geodesic equations have two 
constants of motion, E / p  and O/p;  these are the energy and the angular momentum of 
the test particle which follows the time-like geodesics, divided by its proper mass p. 

The ‘energy equation’ (Bardeen et a1 1972, Bardeen 1972) becomes 

d -  (“d)’- - a -  (:)’ +2b-+c 5 
with 

a = P 2 B 2 ( x Z  - 1)- 16q2C2 

c = A B ( x 2  - 1)- 4 A 2 0 ’ / p 2 m 2  

b = 8qACO/pm 

d = AB2(x’ - l)/P2x8 

where A is the proper time. 
The ‘effective potential’ is determined by the roots of ( 5 ) :  

E -b+(b2-ac)112 
P a = Kff. 
_ -  - 
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The energy of a test particle with respect to a local non-rotating observer (lno) is 
given by (Bardeen et al 1972): 

Elno = aE + b. (7) 

The sign in (6) is determined by the condition that (7) be positive. 
The effective potential (6) depends on the angular momentum of the test particle (0) 

Qualitative features of this effective potential are shown in figure 1 for two typical 
and also, on the rotation of the field (P). 

values of the parameter 0, and the same value of P. 
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Figure 1. Effective potential for a test particle in a TS gravitational field of given angular 
momentum (fixed P) and two different values of particle angular momentum (ml and m2). 
Straight lines represent different possible trajectories of test particle. Points A1 and B1 
correspond to unstable and stable circular orbits. 

The straight lines correspond to geodesics of given E and 0. In the case where the 
‘effective potential’ has a maximum, one has three types of geodesic. If the energy E / p  
is higher than the potential barrier, the geodesic goes all the way down to the ring 
singularity. When E / p  is less than the maximum but more than one, the orbits are 
quasi-hyperbolic, and when E / p  < 1 (but, of course, exceeds the minimum of the 
potential), the orbits followed by the free particle are quasi-elliptic. 

The energy and position of the maximum and minimum of this potential correspond 
to unstable and stable circular orbits respectively. The circular orbits, are thus deter- 
mined by (6) together with the extra condition : 

When the potential has neither maxima nor minima, there are obviously no circular 
orbits, and this is the case for curve 2 of figure 1 .  For these values of 0, the ‘centrifugal 
field’ is not able to overcome the ‘gravitational field’, and every geodesic collapses. 

In figures 2-5, the behaviour of the stable marginally circular orbits for different 
values of the parameters is presented. We represent the energy and the angular momen- 
tum of these circular orbits as functions of the position for different representative values 
of the P parameter (or q = (1 - P’)’’’ = a/m in Bardeen’s notation). Figures 2 and 3 
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Figure 2. Energy of stable circular orbits as function of particle radial position x, for different 
representative values of P parameter (or aim) in the @ > 0 case. 

Figure 3. Position ofstable circular orbits 
as function of particle angular momentum 
@for different representative values of field 
rotation parameter P (or aim) in the 
@ > 0 case. 



1724 J D Alonso 

I !  1 
I 

I I I I I I t  
IO0 2 00 300 

X 

Figure 4. Same quantities as figure 2 in the UJ < 0 case. 
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Figure 5. Same quantities as figure 3 in the UJ < 0 case 

show the energy and angular momentum of stable direct circular orbits as functions of 
position x. Figures 4 and 5 show the same quantities for stable retrograde circular 
orbits. In these graphs, the broken curves indicate the values of energy, position and 
angular momentum where circular orbits appear at each value P (or a/m) which measures 
the field rotation. 
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In the extreme relativistic case (P + 0 or a + m), the coordinate system (3) becomes 
singular and it is necessary to make use of the p coordinate which represents the physical 
length. Putting the metrical functions, in the limit P -, 0, for a coordinate system ( r ,  0) 
defined by : 

p = ( r  - m) sin 0 

z = (r-m)cos 0 

we show that the Kerr and TS metrics coincide, since all the quantities which determine 
the behaviour of particle trajectories in this limit of TS metrics, are the same as those 
calculated by Bardeen for the Kerr metric. More precise numerical information, can 
be obtained from the author. 
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